

Early Estimation of Voice over IP Quality

Pravesh Biyani, Olof Hagsand, Gunnar Karlsson, Ian Marsh, Ignacio Más

(nacho@imit.kth.se)

Laboratory of Communication Networks

IMIT/KTH, Sweden

The big picture

Motivation:

- IP telephony is becoming more widely used
- Users are sensitive to poor quality
- Poor quality calls are a waste of
 - end users time
 - valuable network resources
- System reacts faster than users

Goal:

Early prediction of VoIP quality

Outline of the talk

- Motivation and goal
- Assumptions and methodology
- Measurement description
- Loss measurement for a single call
- Correlation analysis over the sample set
- Conclusions and future work

Assumptions and methodology

- Paths and end systems remain unchanged
- Losses only in the fixed network infrastructure
- Methodology:
 - Probe the network state
 - Send prerecorded conversation between test sites
 - Measure the network state
 - Packet loss is the quality indicator

Measurement infrastructure

- Nine academic sites in a full mesh topology
- Large differences in time zones, hops and distances

Measurement data

Test "signal"	
Call duration	70 seconds
Payload size	160 bytes
Packetisation time (ms)	20ms
Data rate	64kbits/sec
With silence suppression	2043 packets
Without silence suppression	3653 packets
Coding	8 bit PCM
Recorded call size	584480 bytes
Obtained data	
Number of hosts used (2003)	9
Number of traces obtained	18054
Number of data packets	32,771,021
Total data size (compressed)	411 Megabytes
Measurement duration	15 weeks

Sample set reduction:

- Calls with only 20 ms packetization
- No silence suppression

Lossy calls

This reduction results in a subset of 564 calls, with all nine sites represented in the set

Loss behavior for a single call

- Left plot: number of lost packets increases linearly
 - Prediction seems feasible
- Right plot: cumulative loss ratio
 - Indicates the estimation period

Loss ratio for one and ten seconds

- Total loss against initial interval loss
- Each point represents a call between two hosts
- **•** Better prediction as the points approach y = x

Statistical analysis

- Sample space with loss ratios:
 - for 1,2...10 seconds ($L_1, L_2 ... L_{10}$)
 - for the whole call (L_t)
- Correlation coefficient between L_1 and L_t , or L_2 and L_t , up to L_{10} and L_t
 - Statistical measure of the interdependence of two or more random variables

Loss correlation coefficient

- Correlation coefficient for all the calls
- The correlation increases as the probing interval increases
- Correlation stabilizes after four seconds

Conclusion and applications

Conclusion:

- Possible to predict the quality of VoIP calls
 - From our data set, measuring over the initial four seconds of a call suffices to perform an accurate prediction
- Possible applications:
 - Admission control
 - Quality assurance
 - Faster feedback from the system

Future work

Improvements:

- Extend the repository with more communications environment, e.g. wireless links
- Implement the early estimation algorithm in the real VoIP tool and perform real tests
- Perform an extensive statistical analysis to provide confidence interval to the prediction

Further references

- Ian Marsh and Fengyi Li.
 A VoIP measurement infra-structure.
 16th Nordic Teletraffic Seminar, Helsinki, Finland.
- Ian Marsh. Quality aspects of audio communications. Licentiate thesis, Royal Institute of Technology, Sweden.
- Ignacio Más Ivars. PBAC: Probe—Based Admission Control in IP networks. Licentiate thesis, Royal Institute of Technology, Sweden.

New results

Correlation coefficient for the whole trace set